Quantifying Intervention Effectiveness in Single-Case Research Designs

Kuba Glazek, Ph.D.
Methodology Expert
National Center for Academic and Dissertation Excellence
Los Angeles
Outline

• Visual analysis of results
• Overview of effect sizes developed for ABA
• Non-overlap of all pairs (NAP)
• Example exercise
• Applications in ABA studies
• Appendix: Parametric effect sizes
Figure adapted from Pierce & Cheney (2004)
Figure adapted from Pierce & Cheney (2004)
Shortcomings of Visual Analysis

• Subjective/unreliable
• Useful only in immediate context
 – Cannot directly compare efficacy across similar published studies
 – Cannot conduct meta-analysis
• Increasingly does not meet evidence-based grant requirements (e.g., Whitehurst, 2004; for a review, see Parker et al., 2011)
Effect Size Quantifies Visual Analysis

• The question is: How large of a change is there across two conditions of interest?
• Applies to reversal and multiple baseline designs
• For any effect size: compare two sets of datapoints (e.g., baseline and post-intervention)
Percent of Non-Overlapping Data

Figure adapted from Parker & Vannest (2009)
Percent of Non-Overlapping Data
Percent of Non-Overlapping Data

N = 10

PND Method
Percent of Non-Overlapping Data

- All relatively large effects are “the same”
- Any variability can be due to outlying observations in baseline

- Difficult to distinguish between published studies
 - Scientific progress impeded
 - Client behavior may not improve
Percent Exceeding Median
Percent Exceeding Median

- Improvement over PND
- But, medium to large effects are all “the same”

- Difficult to distinguish between published studies
 - Scientific progress impeded
 - Client behavior may not improve
Non-Overlap of All Pairs
Non-Overlap of All Pairs

• NAP = number of comparison pairs showing no overlap, divided by total number of comparisons
• In other words, percent of non-overlapping data between baseline and treatment phases

• Major theoretical advantage: A comprehensive test of all possible sources of data overlap (all baseline versus all treatment datapoint comparisons)
• Major numerical advantage: Interpretability
 – Value of 1 indicates perfect improvement
 – Value of 0.5 indicates no change
 – Value of 0 indicates perfect reduction
Calculating NAP

1. For each Phase A (baseline) datapoint:
 - add 1 for each Phase B (intervention) datapoint that exceeds it
 - Add 0.5 for each Phase B datapoint that ties
 - Add 0 for each Phase B datapoint that is less than it

2. Add up all values for all Phase A datapoints from step 1
 - In this example, there are $10 \times 11 = 110$ values

3. Divide sum from step 2 by total number of comparisons
 - In this example, there are $10 \times 11 = 110$ values

<table>
<thead>
<tr>
<th>Phase A (n = 10)</th>
<th>Phase B (n = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
106/110 = 0.96 = 96% of intervention data do not overlap with baseline data
Multiple Definitions of “Change”

• Change *compared to what?*
 – A1 → B1 → A2 → B2
 • Can compare A1 to B1, A2, or B2
 • Can compare B1 to B2
 • Etc.
 – It all depends on what comparison(s) is(are) logically relevant in terms of the hypothesis

• Change in which direction?
 – Sometimes “non-overlap” in one direction indicates improvement, other times reduction
 – If goal is to increase rate of a behavior, higher scores in Phase B indicate non-overlap (and vice versa)
Multiple Baseline Applications

• Across subjects
 – Examine degree of similarity of % NAP across subjects
 – That is, is there a consistent effect across subjects?

• Across stimulus conditions
 – Examine degree of similarity of % NAP across contexts
 – Examine whether change generalizes to other contexts.
 That is, is there any change in other contexts at the time of
 introducing intervention for target context?

• Across behaviors
 – Examine degree of similarity of % NAP across behaviors
 – Examine whether change generalizes to other behaviors
Cohen’s d and Hedges’s g

Cohen’s d for equal number of observations in both phases:

$$d = \frac{M_E - M_C}{\text{Sample SD pooled}} \times \left(\frac{N - 3}{N - 2.25} \right) \times \sqrt{\frac{N - 2}{N}}$$

Sample SD pooled = $\sqrt{\frac{[(SD_E)^2 + (SD_C)^2]}{2}}$

Hedges’s g for unequal number of observations across phases:

$$g = \frac{M_E - M_C}{SD \text{ pooled}} \times \left(\frac{N - 3}{N - 2.25} \right) \times \sqrt{\frac{N - 2}{N}}$$

SD pooled = $\sqrt{\frac{[(SD_E)^2(n_E - 1)] + [(SD_C)^2(n_C - 1)]}{n_E + n_C - 2}}$

Durlak (2009)
References

Thank You!
Questions?

Presentation available on NCADE YouTube channel
• On YouTube, search for “NCADE”
• Should be the first link, titled “NCADE The Chicago School of Professional Psychology”

Email: ncade.me@thechicagoschool.edu
Phone: (213) 615-7290